Comparison of different geostatistical approaches to map climate variables: application to precipitation

نویسنده

  • Francisco J. Moral
چکیده

The benefits of an integrated geographical information system (GIS) and a geostatistics approach to accurately model the spatial distribution pattern of precipitation are known. However, the determination of the most appropriate geostatistical algorithm for each case is usually neglected, i.e. it is important to select the best interpolation technique for each study area to obtain accurate results. In this work, the ordinary kriging (OK), simple kriging (SK) and universal kriging (universal kriging) methods are compared with three multivariate algorithms which take into account the altitude: collocated ordinary cokriging (OCK), simple kriging with varying local means (SKV) and regression-kriging (RK). The different techniques are applied to monthly and annual precipitation data measured at 136 meteorological stations in a region of southwestern Spain (Extremadura). After carrying out cross-validation, the smallest prediction errors are obtained for the three multivariate algorithms but, particularly, SKV and RK outperform collocated OCK, which needs a more demanding variogram analysis. These algorithms are easily implemented in a GIS, requiring the residual estimates and map algebra capability to generate the final maps. Results evidence the necessity of accounting for spatially dependent precipitation data and the collocated altitude, to accurately define monthly and annual precipitation maps. Copyright  2009 Royal Meteorological Society

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate geostatistical analysis: an application to ore body evaluation

It is now common in the mining industry to deal with several correlated attributes, which need to be jointly simulated in order to reproduce their correlations and assess the multivariate grade risk reasonably. Approaches to multivariate simulation which remove the correlation between attributes of interest prior to simulate and then re-impose the relationship afterward have been gaining popula...

متن کامل

Application of SIMETAW simulation model for prediction of climate parameters in different regions of Iran

So far, several models have been proposed for estimating different climate parameters, but due to the lack of valid and long-term data in some meteorological stations, some models have been difficult to use. The SIMETAV V.1.0 model has been developed in cooperation with the University of California Davis and the Water Resources Authority of California in 2005. The SIMETAW model is a new and inn...

متن کامل

Application of Geostatistical Methods to Estimate Groundwater Level Fluctuations

Keeping the water table at a favorable level is quite significant for a sustainable management of groundwater plans. Various management measures need to know the spatial and temporal behavior of groundwater. Therefore, the measurement of groundwater levels are generally carried out at spatially random locations in the field; whereas, most of the groundwater models requires these measurement at ...

متن کامل

Fine-Resolution Precipitation Mapping in a Mountainous Watershed: Geostatistical Downscaling of TRMM Products Based on Environmental Variables

Accurate precipitation data at a high spatial resolution are essential for hydrological, meteorological, and ecological research at regional scales. This study presented a geostatistical downscaling-calibration procedure to derive the high spatial resolution maps of precipitation over a mountainous watershed affected by a monsoon climate. Based on the relationships between precipitation and oth...

متن کامل

A space and time scale-dependent nonlinear geostatistical approach for downscaling daily precipitation and temperature

A geostatistical framework is proposed to downscale daily precipitation and temperature. The methodology is based on multiple-point geostatistics (MPS), where a multivariate training image is used to represent the spatial relationship between daily precipitation and daily temperature over several years. Here the training image consists of daily rainfall and temperature outputs from the Weather ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010